Face recognition under pose variation with local Gabor features enhanced by Active Shape and Statistical Models
نویسندگان
چکیده
Face recognition is one of the most active areas of research in computer vision. Gabor features have been used widely in face identification because of their good results and robustness. However, the results of face identification strongly depend on how different are the test and gallery images, as is the case in varying face pose. In this paper, a new Gabor-based method is proposed which modifies the grid from which the Gabor features are extracted using a mesh to model face deformations produced by varying pose. Also, a statistical model of the scores computed by using the Gabor features is used to improve recognition performance across pose. Our method incorporates blocks for illumination compensation by a Local Normalization method, and entropy weighted Gabor features to emphasize those features that improve proper identification. The method was tested on the FERET and CMU-PIE databases. Our literature review focused on articles with face identification with wide pose variation. Our results, compared to those of the literature review, achieved the highest classification accuracy on the FERET database with 2D face recognition methods. The performance obtained in the CMU-PIE database is among those obtained by the best methods published. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Robust facial feature tracking under varying face pose and facial expression
This paper presents a hierarchical multi-state pose-dependent approach for facial feature detection and tracking under varying facial expression and face pose. For effective and efficient representation of feature points, a hybrid representation that integrates Gabor wavelets and gray-level profiles is proposed. To model the spatial relations among feature points, a hierarchical statistical fac...
متن کاملRobust Face Recognition using Local Illumination Normalization and Discriminant Feature Point Selection
Face recognition systems must be robust to the variation of various factors such as facial expression, illumination, head pose and aging. Especially, the robustness against illumination variation is one of the most important problems to be solved for the practical use of face recognition systems. Gabor wavelet is widely used in face detection and recognition because it gives the possibility to ...
متن کامل3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier
Pioneer 2D face recognition based on intensity or color images encounters many challenges, like variation in illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the main objective is to analyze what contributions depth and intensity with texture information make to the solution of face reco...
متن کاملPose-Invariant Face Recognition: Representing Known Persons by View-based Statistical Models
We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...
متن کامل3D Face Recognition Based on Depth and Intensity Gabor Features using Symbolic PCA and AdaBoost
Traditional 2D face recognition based on optical (intensity or color) images faces many challenges, such as illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the objective is to investigate what contributions depth and intensity information make to the solution of face recognition problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015